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ABSTRACT 

In the present paper we consider a volume flexible manufacturing system for a deteriorating item with an 

inventory-level-dependent demand rate. In reality, the demand rate remains stock-dependent for some time and 

then becomes a constant after the stock falls down to a certain level. Several factors like limited number of 

potential customers and their goodwill, price and quality of the goods, locality of shop, etc. can be accounted for 

the change in the demand pattern.  

 

INTRODUCTION  
Inventory is a part of every fact of business life. Without inventory any business can not be performed, whether it 

being service organization.  Under increased competition, inventory based business are forced to better co-

ordinate their procurement and marketing decisions to avoid carrying excessive stock when sales are low or 

shortages when demand are high. An effective means of such co-ordination is to conduct the inventory control 

and manufacturing decision jointly. The main task is to determine the optimal rate of production and inventory 

policy for a given time varying demand.  

 

In the Classical Economic Production Lot Size(EPLS) model, the production rate of a machine is regarded to be 

pre-determinded and inflexible1.Alder and Nanda (1974), Sule (1981), Axsater and Elmaghraby (1981), Muth 

and Spearmann (1983) extended the EPLS model to situations where learning effects would induce an increase in 

the production rate. Proteus (1986), Rosenblat and Lee (1986) and Cheng (1991) considered the EPLS model in 

an imperfect production process in which the demand would exceed the supply. Schweitzer and Seidmann (1991) 

adopted, for the first time, the concept of flexibility in the machine production rate and discussed optimization of 

processing rates for a FMS (flexible manufacturing system). Obviously, the machine production rate is a decision 

variable in the case of a FMS and then the unit production cost becomes a function of the production rate. Khouja 

and Mehrez (1994) and Khouja (1995) extended the EPLS model to an imperfect production process with a 

flexible production rate. Silver (1990), Moon, Gallego and Simchi-Levi (1991) discussed the effects of slowing 

down production in the context of a manufacturing equipment of a family of items, assuming a common cycle for 

all the items. Gallego (1993) extended this model by removing the stipulation of a common cycle for all the items. 

But the above studies did not consider the demand rate to be variable. It is a common belief that large piles of 

goods displayed in a supermarket lead the customers to buy more. Silver and Peterson (1985) and Silver (1979) 

have also noted that sales at the retail level tend to be proportional to the inventory displayed. Baker and Urban 

(1988) and Urban (1992) considered an inventory system in which the demand rate of the product is a function of 

the on-hand inventory. Goh (1994) discussed the model of Baker and Urban18 relaxing the assumption of a 

constant holding cost. Mandal and Phaujder (1989) then extended this model to the case of deteriorating items 

with a constant production rate. Datta and Pal (1990) presented an inventory model in which the demand rate of 

an item is dependent on the on-hand inventory level until a given inventory level is achieved, after which the 

demand rate becomes constant. Giri , Pal , Goswami and Chaudhuri (1995) extended the model of Urban (1992) 

to the case of items deteriorating overtime. Ray and Chaudhuri (1997) discussed an EOQ (economic order 

quantity) model with stock-dependent demand, shortage, inflation and time discounting of different costs and 
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prices associated with the system. Ray, Goswami and Chaudhuri (26 studied the inventory problem with a stock-

dependent demand rate and two levels of storage, rented warehouse (RW) and own warehouse (OW). Giri and 

Chaudhuri (1998) extended the model of Goh (1994) to cover an inventory of a deteriorating item and discussed 

both the case of nonlinear time-dependent and stock-dependent holding costs. 

 

ASSUMPTIONS   
1. The inventory system involves only one item and is a self-production system. 

2. Lead time is zero. 

3. No shortages are permitted. 

4. The time-horizon is infinite. 

5. The production cost per unit item is a function of the production rate. 

6. The production rate is considered to be a decision variable. 

 

NOTATIONS 
P  = a.e

bt
  is the  exponentially increasing production rate with respect to time ‘t’. Here a & b are positive 

constants and a   b. 

I(t) - On-hand inventory at time ‘t’ 0 . 

R(I) - Demand-rate function varying with I(t) . 

S 0  - The stock-level, beyond which the demand rate becomes constant. 

  - Constant deterioration rate of the On-hand inventory,0 <   < 1. 

C h  - Holding cost per unit per unit time. 

C s  - Setup cost per production run. 

 (P) - The production cost per unit item. 

S p  - Salvage cost per unit item. 

T - The duration of the production cycle. 

  - Gradient operator. 

 

FORMULATION OF THE MODEL 
We consider a self-manufacturing system in which the items are manufactured in a machine and the market 

demand is filled by these manufactured items. The demand rate is dependent on the on-hand inventory down to a 

level S 0 , beyond which it is assumed to be a constant, i.e., 

R(I) = D +  I(t), I > S 0  

= D + S 0 , 0   I   S 0 , 

Here D and   are non-negative constants and D < P.  

The production cost per unit is 

 (P)  = r + P
p

g
  

Where r, g, and   are all positive constants. This cost is based on the following factors: 

1. The material cost r per unit item is fixed. 

2. As the production rate increases, some costs like labour and energy costs are equally distributed over a large 

number of units. Hence the production cost per unit (g/P) decreases as the production rate (P) increases. 

3. The third term ( P), associated with tool/die costs, and is proportional to the production rate. 
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MATHEMATICAL FORMULATION AND ANALYSIS OF THE MODEL  
The production cycle begins with zero stock. Production starts at t = 0, and the stock reaches a level S 0  at time t = 

t 1  after meeting demands. The demand rate in the interval (0, t 1 ) is (D+  S0). In the interval (t 1 ,t 2 ),production 

continues uninterruptedly and the demand rate depends on the instantaneous stock level. Production is stopped at 

time t = t 2 . The demand rate continues to depend on the instantaneous inventory level until t =t 3  when the stock 

falls down to the level S 0  again. The inventory falls to the zero level at the end t = T of the production cycle. This 

cycle of production is repeated over and over again. Therefore, the governing equations of this model are given 

by 

 

dt

tdI )(
 +   I(t) = a.e

bt
 – (D+ S0), 0  t   t1, I   S0, b = 0. 

With I(0) = 0 and I(t1) = S0                                                                     ------------(1) 

dt

tdI )(
 + (   ) I(t) = a.e

bt
 – D, t1   t   t2, I > S0, b = 0.            -------------(2) 

dt

tdI )(
 + (   ) I(t) = – D, t2   t   t3, I > S0, with I(t3) = 0.      --------------(3) 

dt

tdI )(
 +   I(t) = - (D +  S0) , t3   t   T, I   S0, with I(t) = 0.   -------------(4) 

From (1) 

 
dt

tdI )(
 +   I(t) = a.e

bt
 – (D+ S0) 

 The solution of the above equation by applying boundary conditions I(0)=0,  is given by  

I(t). te  =
)(

a.e(b
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 0S  -D-a
 (1-  te )    ----------------(5) 

Now the applying the boundary conditions I(t1)=S0 
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from (2) 

 
dt

tdI )(
 + (   ) I(t) = a.e

bt
 – D 

 The solution by applying boundary conditions I(t1) = S0 
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Putting b=0 we get 

I(t) = 




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)(
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Therefore t= t2 putting we get 

I(t2) =  







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From (3) 
dt

tdI )(
 + (   )I(t) = -D 

 solution of the above equation by applying  boundary conditions is  

I(t) = I(t2) + 
)(  
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e
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Now I(t3) = S0, Putting t=t3 we get 

 

t3 = t2 - 
  

1
 log

























)(
)(

)(

2

0





D
tI

D
S

                                                         ------------------(10) 

from (4)  
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 Solution of the above equation with boundary conditions I(t3) = S0 is given by 
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let Inv1, Inv2, Inv3, Inv4 be the total inventories in the intervals ,0 1tt   ,21 ttt   
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Therefore we have to maximize ),.( 2tP  

Subject to the constraints 

0)( 0  aSD   

       -Inv1 < 0 

       -Inv2 < 0 

       -Inv3 < 0 

       -I(t2) + S0 < 0 
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The condition 1
.

.
)0)(

0

0
0 




SDa

S
aSD




  which is necessary for the value of t1 in eq
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to be real.The three conditions -Inv1 < 0, -Inv2 < 0, -Inv3 < 0 ensure that Inv1, Inv2, Inv3 must be positive.The 

condition -I(t2) + S0 < 0 Implies that I(t2), the Inventory level at time t2 is higher than S0.The condition –t2+t1<0 

ensures that t2 is greater than t1.This problem can be solved by Zoutrn disk method. Whose algorithm is discussed 

below. 

General Problem : Minimize {- )(X } subject to the constraints : Gj( X ) < 0, where X   
nR  , j = 1, 

2...........m. 
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Algorithm: 

1. Start with an initial feasible point
1X , evaluate  (

1X  ) and Gj(
1X  ), 

j = 1, 2, ........m. Set the iteration number as i = 1. 

2. If Gj( iX ) < 0, j = 1, 2, .......,m. (i.e., ( iX ) is an interior feasible point), 

set the current search direction as 
iS  =-   ( iX ) . Normalize

iS  in a suitable manner. 

3. Find a suitable step length i  along the direction 
iS  and obtain a new 

point 
1iX  as 1iX  1X  + i  

iS   

4. Evaluate the objective function  ( 
1iX ). 

5. Test for the convergence of the method. If | )(/)}(({ 1) iii XXX    |  where  is a pre assigned small 

positive quantity, terminate the iteration by taking
1


iopt XX . Otherwise, go to next step. 

6. Set the new iteration number as i = i + 1 , and repeat from step 2 onwards. 

 

Numerical Example 

We take the parameter values as D = 50, _ = 0.05, = 0.1,
0S  = 100, 

 
sC = 300, 

hC = 0.1, 
pS  = 6.0, r = 1.0, g = 250, _ = 0.01 in appropriate units. 

We obtain the optimum results 
1t  = 1.258883, 2t  = 6.696204, 

3t  = 10.07596, 

T = 11.67682, P= 141.9617 

 

CONCLUSION 

In this paper an inventory model is developed and analyzed for decaying items with stock -dependent demand 

rate. It is assumed that the demand rate remains stock-dependent for an initial period after which a uniform 

demand rate follows as the stock comes down to a certain level. The unit production cost is taken to be a function 

of the finite production rate which is treated to be a decision variable. The mathematical expression for the 

average profit function is derived and it is maximized subject to the different constraints of the system using 

method of constrained optimization, the algorithm of which is given. The solution procedure is illustrated with the 

help of a numerical example.  
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